\qquad
\qquad

SUMMARY AND REVIEW OF ENERGY, WORK, \& POWER

I) Kinetic Energy (K.E.)- energy of \qquad measured in \qquad

$$
\text { K.E. }=\quad \text { If you are not moving, your K.E. }=\ldots \quad \mathrm{J}
$$

II) Potential Energy (P.E.) - the energy due to an object's \qquad measured in \qquad

$$
\text { P.E. }=
$$

If you are on the ground, your P.E. $=$ \qquad
III) The Conservation of Energy- means the \qquad energy remains constant
initial PE + the initial KE $=$ final $\overline{P E}+$ final $K E$ $\mathrm{PE}_{\mathrm{i}}+\mathrm{KE}_{\mathrm{i}}=\mathrm{PE}_{\mathrm{f}}+\mathrm{KE}_{\mathrm{f}}$

$$
m g h_{i}+1 / 2 m v_{i}^{2}=m g h_{f}+1 / 2 m v_{f}^{2}
$$

Concept of the Conservation of Energy

The total energy stays constant.. Example- swinging pendulum
Pendulum stopped at the top.

$$
\begin{aligned}
& \text { P.E. }=\quad \underline{20} \quad \mathbf{J} \\
& \text { K.E. }=_\quad \mathrm{J}
\end{aligned}
$$

When a pendulum hangs straight down, $h=$ \qquad
P.E. $=$ \qquad J

WORK: Amount of energy transferred by a \qquad acting through a \qquad
\square Measured in \qquad

POWER: The rate at which work is done or energy is transferred.
\square Measured in \qquad $=1$ \qquad
\qquad Watts $=1$ horsepower (hp)
\qquad Hour: \qquad
 your horsepower? (-1.07 hp)
2. A hot wheel car (mass=15.5 g) starts from rest 3.1 m above the ground and slides down a track as shown below. It leaves the track horizontally at 1.2 m off the ground. Calculate how far away (Δx) from the base of the ramp it will land. (3.01 m) (Use CE to find Vf , then car turns into a horizontal projectile with $\mathrm{Vf}=\mathrm{Vx}$ and $\Delta \mathrm{y}=1.2 \mathrm{~m}$)

3. You are helping your dad string holiday lights on your roof (height $=7.2 \mathrm{~m}$) when you accidentally drop a 5-lb hammer. How fast is the hammer traveling after falling 4.0 m ? Solve this problem using both:

conservation of energy equation: ($8.85 \mathrm{~m} / \mathrm{s}$)
 one-dimensional motion equation: ($8.85 \mathrm{~m} / \mathrm{s}$)

Before you start... what is $\Delta \mathbf{y}$? \qquad h_{i} ? \qquad h_{f} ? \qquad
4. A $2,500 \mathrm{~kg}$ car accelerates from 0 to $31.5 \mathrm{~m} / \mathrm{s}$ in 5.55 seconds. What is the horsepower delivered by the engine during the acceleration? ($\approx 300 \mathrm{hp}$. You will need to solve for the a, $\Delta \mathbf{x}, \mathrm{W}, \mathrm{P}$, and hp!) Wow you know a lot of physics ;)
5. You kick a 1.25 kg ball at a 65° angle with a velocity of $15.2 \mathrm{~m} / \mathrm{s}$. What is the potential energy of the ball at its maximum height? ($\approx 120 \mathrm{~J})$

