SUMMARY AND REVIEW OF ENERGY, WORK, & POWER

I) Kinetic Energy (K.E.)- energy of	measured in	
K. E.=	If you are not moving, your K.E. =J	
II) Potential Energy (P.E.) - the energy due to P.E.=	o an object's measured in If you are on the ground, your P.E. =	- J
III) <u>The Conservation of Energy</u> - means the _ initial PE + the initial KE = final 1 PE _i + KE _i = PE	PE + final KE f + KE _f Starts with speed = As it falls, loses PE because it's _ is decreasing.	
$mgh_i + \frac{1}{2}mv_i^2 = mgh_f + \frac{1}{2}$	<i>mv_j²</i> As it falls, gains K.I because it's is increasing. The total is	• 40 PE/60 KE
Concept of the Conservation of Energy The total energy stays constant Example- swin Pendulum stopped at the top. P.E.= <u>20</u> J K.E.= J	nging pendulum	
When a pendulum hangsHstraight down, h=K	O P.E.= J L.E.= J	
WORK: Amount of energy transferred by a	acting through a	
Work =	Measured in	
POWER: The rate at which work is done or en	ergy is transferred.	
Power =	Measured in = 1 Watts = 1 horsepower	(hp)

1. If you (165 lbs) can run up a flight of **20 stairs** that are **each 0.25 m high** in 4.6 sec, what is your horsepower? (-1.07 hp)

2. A hot wheel car (mass=15.5 g) starts from rest 3.1 m above the ground and slides down a track as shown below. It leaves the track horizontally at 1.2 m off the ground. Calculate how far away (Δx) from the base of the ramp it will land. (3.01 m) (Use CE to find Vf, then car turns into a horizontal projectile with Vf=Vx and $\Delta y = 1.2$ m)

3. You are helping your dad string holiday lights on your roof (height = 7.2 m) when you accidentally drop a 5-lb hammer. How fast is the hammer traveling after falling 4.0 m? Solve this problem using both:

conservation of energy equation: (8.85 m/s)	one-dimensional motion equation: (8.85 m/s)	
Before you start what is $\Delta \mathbf{y}$?	h i?	h _f ?

A 2,500 kg car accelerates from 0 to 31.5 m/s in 5.55 seconds. What is the horsepower delivered by the engine during the acceleration? (≈300 hp. You will need to solve for the a, Δx, W, P, and hp!) Wow you know a lot of physics ☺

5. You kick a 1.25 kg ball at a 65° angle with a velocity of 15.2 m/s. What is the potential energy of the ball at its maximum height? (\approx 120 J)

2